ujs logo ujs logo ujs logoujs logo

prof. László Szalay, DSc.
Name: prof. László Szalay, DSc.
Faculty: Faculty of Economics and Informatics
Department: Department of Mathematics
Position: Professor
Office: TP4
E-mail:
Phone +421 35 32 60 650
Person responsible for the profile subjects of the study programme:
Theory of Teaching Matematics and Informatics - Field of Mathematics (3. degree, full-time form)

University studies
ELTE
mathematics-physics-computer sciences
1984 - 1989
PhD. study
KLTE
mathematics
1994 - 1997
Habilitation
University of Debrecen
mathematics
2007
Inauguration for professor
University of Sopron
mathematics
2016
Doctor of Sciences
Hungarian Academy of Sciences
mathematics
2015



Research area Mathematics, number theory Diophantine equations, theory of linear recurrences, combinatorial number theory, discrete iteration.

Research projects Density of number sequences, density and the property of convergence
VEGA 1/0776/21

2021 - 2023





Category A1 - Book publications of scientific monograph character (AAA, AAB, ABA, ABB, ABC, ABD)
Number of entries: 0

Category A2 - Miscellaneous book publications (ACA, ACB, BAA, BAB, BCB, BCI, EAI, CAA, CAB, EAJ, FAI)
Number of entries: 0

Category B - Journals listed in international databases, author warrants, patents, and discoveries (ADC, ADD, AEG, AEH, BDC, BDD, CDC, CDD, AGJ)
Number of entries: 9
ADC Scientific/scholarly papers published abroad in journals registered in the Current Contents Connect database (9)

Category C - Miscellaneous peer-reviewed publications (ACC, ACD, ADE, ADF, AEC, AED, AFA, AFB, AFC, AFD, AFE, AFF, AFG, AFH, BBA, BBB, BCK, BDA, BDB, BDE, BDF, BEC, BED, BFA, BFB, BGH, CDE, CDF)
Number of entries: 2
ADE Scientific/scholarly papers published abroad in journals not registered in the Current Contents Connect database (1)
AFC Published conference articles presented at conferences abroad (1)

Category N - Miscellaneous non peer-reviewed publications (ADM, ADN, AEM, AEN, BDM, BDN, CBA, CBB)
Number of entries: 24
ADM Scientific/scholarly papers published abroad in journals registered in the databases Web of Science or SCOPUS (22)
ADN Scientific/scholarly papers published inland in journals registered in the databases Web of Science or SCOPUS (2)

Category D - Miscellaneous publications not classified by the MESR
Number of entries: 0

Total number of entries: 35

Citations:

[1] Citations and reviews which appeared in a foreign publication and are listed in an international database (WoS or Scopus). (3)
Total: 3

List of publications:

ADC Scientific/scholarly papers published abroad in journals registered in the Current Contents Connect database
Number of entries: 9


ADC 001 ALP, Murat, Nurettin IRMAK a László SZALAY. Balancing Diophantine triples with distance 1. DOI 10.1007/s10998-014-0074-8 Periodica Mathematica Hungarica. Vol. 71, no. 1 (2015), p. 1-10. ISSN 0031-5303. WoS, SCOPUS. IF (2014): 0,479. SNIP (2014): 0,830.

ADC 002 SZALAY, László a Volker ZIEGLER. S-diophantine quadruples with S = {2, q}. DOI 10.1142/S1793042115500475 International Journal of Number Theory. Vol. 11, no. 3 (2015), p. 849-868. ISSN 1793-0421. WoS, SCOPUS. IF (2014): 0,462. SNIP (2014): 0,857.

Citations:
2021  [1] FUCHS, C. - HEINTZE, S. Another s-unit variant of diophantine tuples. In Proceedings of the American Mathematical Society. ISSN 0002-9939, 2021, vol. 149, no. 1, p. 27-35. WoS ;SCOPUS



ADC 003 BELBACHIR, Hac`ene, László NÉMETH a László SZALAY. Hyperbolic Pascal triangles. DOI 10.1016/j.amc.2015.10.001 Applied Mathematics and Computation. Vol. 273, no. January (2016), p. 453-464. ISSN 0096-3003. CCC, WoS, SCOPUS. IF (2015): 1,436. SNIP (2014): 1,378.

ADC 004 LUCA, Florian, Amanda MONTEJANO, László SZALAY a Alain TOGBÉ. On the X-coordinates of Pell equations which are Tribonacci numbers. DOI 10.4064/aa8553-2-2017 Acta Arithemetica. Vol. 179, no. 1 (2017), p. 25-35. ISSN 0065-1036. WoS, SCOPUS. IF (2016): 0,563. SNIP (2015): 0,960.

Citations:
2020  [1] DDAMULIRA, M. On the X–coordinates of pell equations that are products of two padovan numbers. In Integers. ISSN 1553-1732, 2020, vol. 20. SCOPUS



ADC 005 KOMATSU, Takao, László NÉMETH a László SZALAY. Tilings of hyperbolic (2 x n)-board with colored squares and dominoes. DOI 10.26493/1855-3974.1470.e79 Ars Mathematica Contemporanea. Roč. 15, č. 2 (2018), s. 337-346 [print]. ISSN 1855-3966. WoS, SCOPUS.

Q WoS=Q3

ADC 006 BELBACHIR, Hac`ene, Abdelghani MEHDAOUI a László SZALAY. Diagonal sums in Pascal pyramid. DOI 10.1016/j.jcta.2019.01.007 Journal of combinatorial theory. Series A. Vol. 165 (2019), p. 106-116. ISSN 0097-3165. WoS, SCOPUS.

Q WoS=Q2

ADC 007 KAFLE, Bir, Florian LUCA, Amanda MONTEJANO, László SZALAY a Alain TOGBÉ. On the X-coordinates of Pell equations which are products of two Fibonacci numbers. DOI 10.1016/j.jnt.2019.03.011 Journal of Number Theory. Vol. 203 (2019), p. 310-333. ISSN 0022-314X. CCC, WoS, SCOPUS.

Q WoS=Q3

Citations:
2020  [1] DDAMULIRA, M. On the X–coordinates of pell equations that are products of two padovan numbers. In Integers. ISSN 1553-1732, 2020, vol. 20. SCOPUS



ADC 008 LIPTAI, Kálmán, László NÉMETHY, Gokhan SOYDAN a László SZALAY. Resolution of the Equation (3(x1)-1)(3(x2)-1) = (5(y1)-1)(5(y2)-1). DOI 10.1216/rmj.2020.50.1425 The Rocky Mountain Journal of Mathematics. Vol. 50, no. 4 (2020), p. 1425-1433. ISSN 0035-7596. CCC, WoS, SCOPUS.

Q WoS=Q3 Q Scopus=Q3

ADC 009 LUCA, Florian, Attila PETHŐ a László SZALAY. Duplications in the k-generalized Fibonacci sequences. NEW YORK JOURNAL OF MATHEMATICS. Vol. 27 (2021), p. 1115-1133. ISSN 1076-9803. CCC, WoS, SCOPUS.

Q WoS=Q4


ADE Scientific/scholarly papers published abroad in journals not registered in the Current Contents Connect database
Number of entries: 1


ADE 001 TAKAO, Komatsu a László SZALAY. q-multiparameter-Bernoulli Polynomials and q-multiparameter-Cauchy Polynomials by Jackson's Integrals. INTEGERS. online, vol. 16 (2016), p. [1-11]. ISSN 1553-1732.


ADM Scientific/scholarly papers published abroad in journals registered in the databases Web of Science or SCOPUS
Number of entries: 22


ADM 001 ALP, Murat, Nurettin IRMAK a László SZALAY. Reduced diophantine quadruples with the binary recurrence G(n) = AG(n-1) - G(n-2). DOI 10.1515/auom-2015-0022 Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica. Vol. 23, no. 2 (2015), p. 23-31. ISSN 1224-1784. WoS, SCOPUS. IF (2014): 0,333. SNIP (2014): 0,528.

ADM 002 NÉMETH, László a László SZALAY. Alternating sums in hyperbolic Pascal triangles. DOI 10.18514/MMN.2016. Miskolc Mathematical Notes. Vol. 17, no. 2 (2016), p. 989-998. ISSN 1787-2405. WoS, SCOPUS. IF (2015): 0,335. SNIP (2015): 1,203.

ADM 003 BELBACHIR, Hac`ene a László SZALAY. Fibonacci, and Lucas Pascal triangles. DOI 10.15672/HJMS.20164515688 Hacettepe Journal of Mathematics and Statistics. Vol. 45, no. 5 (2016), p. 1343-1354. ISSN 1303-5010. SCOPUS. SNIP (2015): 0,812.

ADM 004 KOMATSU, Takao, István MEZŐ a László SZALAY. Incomplete cauchy numbers. Acta Mathematica Hungarica. Vol. 149, no. 2 (2016), p. 306-323. ISSN 0236-5294. WoS. IF (2015): 0,469.

ADM 005 NÉMETH, László a László SZALAY. Recurrence sequences in the hyperbolic pascal triangle corresponding to the regular mosaic {4, 5}. Annales Mathematicae et Informaticae. Vol. 46 (2016), p. 165-173. ISSN 1787-5021. SCOPUS. SNIP (2015): 0,663.

ADM 006 NURETTIN, Irmak a László SZALAY. Tribonacci numbers close to the sum 2a + 3b + 5C. Mathematica Scandinavica. Vol. 118, no. 1 (2016), p. 27-32. ISSN 0025-5521. SCOPUS. SNIP (2014): 0,572.

ADM 007 LIPTAI, Kálmán, Gopal Krishna PANDA a László SZALAY. A balancing problem on a binary recurrence and its associate. Fibonacci Quarterly. Vol. 54, no. 3 (2016), p. 235-241. ISSN 0015-0517. WoS, SCOPUS. IF (2016): 0,233. SNIP (2016): 0,931.

ADM 008 KIMBERLING, Clark a László SZALAY. T-sion of two polynomial sequences and factorization properties. Fibonacci Quarterly. Vol. 54, no. 1 (2016), p. 3-10. ISSN 0015-0517. WoS, SCOPUS. IF (2016): 0,233. SNIP (2016): 0,931.

ADM 009 KIMBERLING, Clark, Takao KOMATSU, Kálmán LIPTAI a László SZALAY. A connection between hyper-fibonacci numbers and fissions of polynomial sequences. The Fibonacci quarterly = Fibonacci quarterly : a journal devoted to the study of integers with special properties. = Fibonacci quarterly Roč. 56, č. 3 (2018), s. 195-199. ISSN 0015-0517. SCOPUS.

ADM 010 KOMATSU, Takao a László SZALAY. A new formula for hyper-Fibonacci numbers, and the number of occurrences. DOI 10.3906/mat-1607-13 Turkish journal of mathematics. 42 3 (2018), 993-1004 [online]. ISSN 1300-0098. SCOPUS.

Q WoS=Q3

ADM 011 FUCHS, Clemens, Christoph HUTLE, Florian LUCA a László SZALAY. Diophantine Triples and k-Generalized Fibonacci Sequences. DOI 10.1007/s40840-016-0405-4 Bulletin of the Malaysian Mathematical Society. Roč. 41, č. 3 (2018), s. 1449-1465 [print]. ISSN 0126-6705. WoS, SCOPUS.

Q WoS=Q2

ADM 012 IRMAK, Nurettin, Kálmán LIPTAI a László SZALAY. Factorial-like values in the balancing sequence. Mathematical Communications. Roč. 23, č. 2 (2018), s. 197-204 [print]. ISSN 1331-0623. WoS.

Q WoS=Q2

ADM 013 KHADIR, Omar, László NÉMETH a László SZALAY. On sunlet graphs connected to a specific map on {1, 2, ..., p − 1}. DOI 10.33039/ami.2018.05.002 Annales Mathematicae et Informaticae. Vol. 49 (2018), p. 101-107. ISSN 1787-5021. SCOPUS.

ADM 014 SOYDAN, Gokhan, László NÉMETH a László SZALAY. On the diophantine equation ∑k j=1 jFj p = Fn q. DOI 10.5817/AM2018-3-177 Archivum mathematicum. Roč. 54, č. 3 (2018), s. 177-188 [print]. ISSN 0044-8753. WoS, SCOPUS.

ADM 015 NÉMETH, László a László SZALAY. Power sums in hyperbolic pascal triangles. DOI 10.2478/auom-2018-0012 Analele Stiintifice ale Universitatii Ovidius Constanta : Seria Matematica. 26 1 (2018), 189-203 [print]. ISSN 1224-1784. WoS, SCOPUS.

Q WoS=Q2

ADM 016 BELBACHIR, Hac`ene, Abdelghani MEHDAOUI a László SZALAY. Diagonal Sums in the Pascal Pyramid, II: Applications. Journal of Integer Sequences. Vol. 22, no. 3 (2019), p. 1-11. ISSN 1530-7638. WoS, SCOPUS.

ADM 017 IRMAK, Nurettin a László SZALAY. Lucas numbers of the form ((2t)(k)). DOI 10.12697/ACUTM.2019.23.06 Acta et Commentationes Universitatis Tartuensis de Mathematica. Vol.. 3, no. 1 (2019), p. 65-70. ISSN 1406-2283. WoS.

Q WoS=Q4

ADM 018 SZALAY, László. Computational algorithm for solving the diophantine equations 2n ± α · 2m + α2 = x2. Houston Journal of Mathematics. Vol. 46, no. 2 (2020), p. 295-306. ISSN 0362-1588. SCOPUS.

ADM 019 GUETH, Krisztián, Florian LUCA a László SZALAY. On a Diophantine equation involving powers of Fibonacci numbers. DOI 10.3792/PJAA.96.007 Proceedings of the Japan Academy : Series A, Mathematical Sciences. Vol. 96, no. 4 (2020), p. 33-37. ISSN 0386-2194. WoS, SCOPUS.

Q WoS=Q4

ADM 020 LUCA, Florian a László SZALAY. On the equation (2k −1)(3l −1) = 5m −1. Azerbaijan Journal of Mathematics. Vol. 10, no. 2 (2020), p. 3-11. ISSN 2218-6816. WoS, SCOPUS.

Q Scopus=Q3

ADM 021 LUCA, Florian, Prapanpong PONGSRIIAM a László SZALAY. On the divisibility Fk j F2 x + Fx +1. DOI 10.2306/scienceasia1513-1874.2021.005 ScienceAsia. Vol. 47, no. 1 (2021), p. 106-110. ISSN 1513-1874. WoS, SCOPUS.

Q WoS=Q4 Q Scopus=Q3

ADM 022 NÉMETH, László a László SZALAY. Sequences Involving Square Zig-Zag Shapes. Journal of Integer Sequences. Vol. 24, no. 5 (2021), art. no. 21.5.2, p. [1-13]. ISSN 1530-7638. WoS, SCOPUS.

Q Scopus=Q3


ADN Scientific/scholarly papers published inland in journals registered in the databases Web of Science or SCOPUS
Number of entries: 2


ADN 001 FUCHS, Clemens, Christoph HUTLE, Nurettin IRMAK, Florian LUCA a László SZALAY. Only finitely many Tribonacci Diophantine triples exist. DOI 10.1515/ms-2017-0015 Mathematica Slovaca. Vol. 67, no. 4 (2017), p. 853-862. ISSN 0139-9918. SCOPUS. SNIP (2016): 0,745.

ADN 002 GUETH, Károly a László SZALAY. The diophantine equations 2n ± 3 · 2m + 9 = x2. Acta Mathematica Universitatis Comenianae = Proceedings of Algoritmy Conference = Zborník Matematicko-fyzikálnej fakulty UK. = Proceedings of Algoritmy Conference Roč. 87, č. 2 (2018), s. 199-204. ISSN 0862-9544. SCOPUS.


AFC Published conference articles presented at conferences abroad
Number of entries: 1


AFC 001 BELBACHIR, Hac`ene, László NÉMETH a László SZALAY. Properties of hyperbolic Pascal triangles. DOI 10.1063/1.4994434 AIP Conference Proceedings. Vol. 1867, art. no. 020031 (2017), p. [1-5]. ISSN 0094-243X. WoS, SCOPUS.




 

To help provide better efficiency and user experience, we use cookies. By clicking or navigating the site, you agree to allow our collection and use of cookies.

  
spam vedelem